9 research outputs found

    New London Main Street: Preserve, Enhance, Promote

    Get PDF

    A random forest approach to segmenting and classifying gestures

    Full text link
    This thesis investigates a gesture segmentation and recognition scheme that employs a random forest classification model. A complete gesture recognition system should localize and classify each gesture from a given gesture vocabulary, within a continuous video stream. Thus, the system must determine the start and end points of each gesture in time, as well as accurately recognize the class label of each gesture. We propose a unified approach that performs the tasks of temporal segmentation and classification simultaneously. Our method trains a random forest classification model to recognize gestures from a given vocabulary, as presented in a training dataset of video plus 3D body joint locations, as well as out-of-vocabulary (non-gesture) instances. Given an input video stream, our trained model is applied to candidate gestures using sliding windows at multiple temporal scales. The class label with the highest classifier confidence is selected, and its corresponding scale is used to determine the segmentation boundaries in time. We evaluated our formulation in segmenting and recognizing gestures from two different benchmark datasets: the NATOPS dataset of 9,600 gesture instances from a vocabulary of 24 aircraft handling signals, and the CHALEARN dataset of 7,754 gesture instances from a vocabulary of 20 Italian communication gestures. The performance of our method compares favorably with state-of-the-art methods that employ Hidden Markov Models or Hidden Conditional Random Fields on the NATOPS dataset. We conclude with a discussion of the advantages of using our model

    Personalized face and gesture analysis using hierarchical neural networks

    Full text link
    The video-based computational analyses of human face and gesture signals encompass a myriad of challenging research problems involving computer vision, machine learning and human computer interaction. In this thesis, we focus on the following challenges: a) the classification of hand and body gestures along with the temporal localization of their occurrence in a continuous stream, b) the recognition of facial expressivity levels in people with Parkinson's Disease using multimodal feature representations, c) the prediction of student learning outcomes in intelligent tutoring systems using affect signals, and d) the personalization of machine learning models, which can adapt to subject and group-specific nuances in facial and gestural behavior. Specifically, we first conduct a quantitative comparison of two approaches to the problem of segmenting and classifying gestures on two benchmark gesture datasets: a method that simultaneously segments and classifies gestures versus a cascaded method that performs the tasks sequentially. Second, we introduce a framework that computationally predicts an accurate score for facial expressivity and validate it on a dataset of interview videos of people with Parkinson's disease. Third, based on a unique dataset of videos of students interacting with MathSpring, an intelligent tutoring system, collected by our collaborative research team, we build models to predict learning outcomes from their facial affect signals. Finally, we propose a novel solution to a relatively unexplored area in automatic face and gesture analysis research: personalization of models to individuals and groups. We develop hierarchical Bayesian neural networks to overcome the challenges posed by group or subject-specific variations in face and gesture signals. We successfully validate our formulation on the problems of personalized subject-specific gesture classification, context-specific facial expressivity recognition and student-specific learning outcome prediction. We demonstrate the flexibility of our hierarchical framework by validating the utility of both fully connected and recurrent neural architectures

    Personalizing gesture recognition using hierarchical bayesian neural networks

    Full text link
    Building robust classifiers trained on data susceptible to group or subject-specific variations is a challenging pattern recognition problem. We develop hierarchical Bayesian neural networks to capture subject-specific variations and share statistical strength across subjects. Leveraging recent work on learning Bayesian neural networks, we build fast, scalable algorithms for inferring the posterior distribution over all network weights in the hierarchy. We also develop methods for adapting our model to new subjects when a small number of subject-specific personalization data is available. Finally, we investigate active learning algorithms for interactively labeling personalization data in resource-constrained scenarios. Focusing on the problem of gesture recognition where inter-subject variations are commonplace, we demonstrate the effectiveness of our proposed techniques. We test our framework on three widely used gesture recognition datasets, achieving personalization performance competitive with the state-of-the-art.http://openaccess.thecvf.com/content_cvpr_2017/html/Joshi_Personalizing_Gesture_Recognition_CVPR_2017_paper.htmlhttp://openaccess.thecvf.com/content_cvpr_2017/html/Joshi_Personalizing_Gesture_Recognition_CVPR_2017_paper.htmlhttp://openaccess.thecvf.com/content_cvpr_2017/html/Joshi_Personalizing_Gesture_Recognition_CVPR_2017_paper.htmlPublished versio

    A Random Forest Approach to Segmenting and Classifying Gestures

    Get PDF
    Abstract-This work investigates a gesture segmentation and recognition scheme that employs a random forest classification model. Our method trains a random forest model to recognize gestures from a given vocabulary, as presented in a training dataset of video plus 3D body joint locations, as well as outof-vocabulary (non-gesture) instances. Given an input video stream, our trained model is applied to candidate gestures using sliding windows at multiple temporal scales. The class label with the highest classifier confidence is selected, and its corresponding scale is used to determine the segmentation boundaries in time. We evaluated our formulation in segmenting and recognizing gestures from two different benchmark datasets: the NATOPS dataset of 9,600 gesture instances from a vocabulary of 24 aircraft handling signals, and the ChaLearn dataset of 7,754 gesture instances from a vocabulary of 20 Italian communication gestures. The performance of our method compares favorably with state-of-the-art methods that employ Hidden Markov Models or Hidden Conditional Random Fields on the NATOPS dataset

    Brown University Music Department

    No full text
    corecore